High-field (275 GHz) spin-label EPR for high-resolution polarity determination in proteins.

نویسندگان

  • Michelina G Finiguerra
  • Hubert Blok
  • Marcellus Ubbink
  • Martina Huber
چکیده

The polarity of protein surfaces is one of the factors driving protein-protein interactions. High-field, spin-label EPR at 95 GHz, i.e., 10 times higher than conventional EPR, is an upcoming technique to determine polarity parameters of the inside of proteins. Here we show that by 275 GHz EPR even the small polarity differences of sites at the protein surface can be discriminated. To do so, four single cysteine mutations were introduced at surface sites (positions 12, 27, 42, and 118) of azurin and spin labeled. By 275 GHz EPR in frozen solution, polarity/proticity differences between all four sites can be resolved, which is impossible by 95 GHz EPR. In addition, by 275 GHz EPR, two spectral components are observed for all mutants. The difference between them corresponds to one additional hydrogen bond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen bonding of nitroxide spin labels in membrane proteins.

On the basis of experiments at 275 GHz, we reconsider the dependence of the continuous-wave EPR spectra of nitroxide spin-labeled protein sites in sensory- and bacteriorhodopsin on the micro-environment. The high magnetic field provides the resolution necessary to disentangle the effects of hydrogen bonding and polarity. In the gxx region of the 275 GHz EPR spectrum, bands are resolved that der...

متن کامل

High-Field EPR Spectroscopy on Transfer Proteins in Biological Action

In the last decade joint efforts of biologists, chemists, and physicists were made to understand the dominant factors determining specificity and directionality of transmembrane transfer processes in proteins. Characteristic examples of such factors are time varying specific H-bonding patterns and/or polarity effects of the microenvironment. In this overview, a few large paradigm biosystems are...

متن کامل

Local polarity and hydrogen bonding inside the Sec14p phospholipid-binding cavity: high-field multi-frequency electron paramagnetic resonance studies.

Sec14p promotes the energy-independent transfer of either phosphatidylinositol (PtdIns) or phosphatidylcholine (PtdCho) between lipid bilayers in vitro and represents the major PtdIns/PtdCho transfer protein in the budding yeast Saccharomyces cerevisiae. Herein, we employ multi-frequency high-field electron paramagnetic resonance (EPR) to analyze the electrostatic and hydrogen-bonding microenvi...

متن کامل

Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR.

While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifu...

متن کامل

Lipid membrane polarity profiles by high-field EPR.

Profiles of polarity across biological membranes are essential determinants of the cellular permeability barrier and of the stability of transmembrane proteins. High-field electron paramagnetic resonance of systematically spin-labeled lipid chains is used here to determine the polarity profiles of cholesterol-containing phospholipid membranes. The polarity dependence of the g(xx)-tensor element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 180 2  شماره 

صفحات  -

تاریخ انتشار 2006